Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Commun ; 14(1): 476, 2023 01 30.
Article in English | MEDLINE | ID: covidwho-2221809

ABSTRACT

The adaptive immune response is under circadian control, yet, why adaptive immune reactions continue to exhibit circadian changes over long periods of time is unknown. Using a combination of experimental and mathematical modeling approaches, we show here that dendritic cells migrate from the skin to the draining lymph node in a time-of-day-dependent manner, which provides an enhanced likelihood for functional interactions with T cells. Rhythmic expression of TNF in the draining lymph node enhances BMAL1-controlled ICAM-1 expression in high endothelial venules, resulting in lymphocyte infiltration and lymph node expansion. Lymph node cellularity continues to be different for weeks after the initial time-of-day-dependent challenge, which governs the immune response to vaccinations directed against Hepatitis A virus as well as SARS-CoV-2. In this work, we present a mechanistic understanding of the time-of-day dependent development and maintenance of an adaptive immune response, providing a strategy for using time-of-day to optimize vaccination regimes.


Subject(s)
COVID-19 , Circadian Clocks , Humans , COVID-19/prevention & control , SARS-CoV-2 , Adaptive Immunity , Vaccination , Lymph Nodes
2.
J Clin Immunol ; 41(8): 1723-1732, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525557

ABSTRACT

BACKGROUND: SARS-CoV-2 infection leads to high viral loads in the upper respiratory tract that may be determinant in virus dissemination. The extent of intranasal antiviral response in relation to symptoms is unknown. Understanding how local innate responses control virus is key in the development of therapeutic approaches. METHODS: SARS-CoV-2-infected patients were enrolled in an observational study conducted at the Geneva University Hospitals, Switzerland, investigating virological and immunological characteristics. Nasal wash and serum specimens from a subset of patients were collected to measure viral load, IgA specific for the S1 domain of the spike protein, and a cytokine panel at different time points after infection; cytokine levels were analyzed in relation to symptoms. RESULTS: Samples from 13 SARS-CoV-2-infected patients and six controls were analyzed. We found an increase in CXCL10 and IL-6, whose levels remained elevated for up to 3 weeks after symptom onset. SARS-CoV-2 infection also induced CCL2 and GM-CSF, suggesting local recruitment and activation of myeloid cells. Local cytokine levels correlated with viral load but not with serum cytokine levels, nor with specific symptoms, including anosmia. Some patients had S1-specific IgA in the nasal cavity while almost none had IgG. CONCLUSION: The nasal epithelium is an active site of cytokine response against SARS-CoV-2 that can last more than 2 weeks; in this mild COVID-19 cohort, anosmia was not associated with increases in any locally produced cytokines.


Subject(s)
COVID-19/immunology , Cytokines/biosynthesis , Inflammation/etiology , Nasal Mucosa/immunology , SARS-CoV-2 , Viral Load , Adult , Aged , Antibodies, Viral , COVID-19/virology , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , SARS-CoV-2/immunology
3.
Cell Rep ; 37(1): 109773, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1442298

ABSTRACT

SARS-CoV-2 infection in children is less severe than it is in adults. We perform a longitudinal analysis of the early innate responses in children and adults with mild infection within household clusters. Children display fewer symptoms than adults do, despite similar initial viral load, and mount a robust anti-viral immune signature typical of the SARS-CoV-2 infection and characterized by early interferon gene responses; increases in cytokines, such as CXCL10 and GM-CSF; and changes in blood cell numbers. When compared with adults, the antiviral response resolves faster (within a week of symptoms), monocytes and dendritic cells are more transiently activated, and genes associated with B cell activation appear earlier in children. Nonetheless, these differences do not have major effects on the quality of SARS-CoV-2-specific antibody responses. Our findings reveal that better early control of inflammation as observed in children may be key for rapidly controlling infection and limiting the disease course.


Subject(s)
Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , Cytokines/metabolism , Immunity, Innate , SARS-CoV-2/immunology , Transcriptome , Adaptive Immunity , Adolescent , Adult , B-Lymphocytes/metabolism , COVID-19/virology , Chemokine CXCL10/metabolism , Child , Child, Preschool , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Infant , Inflammation/virology , Interferons/metabolism , Longitudinal Studies , Middle Aged , Monocytes/metabolism , Sequence Analysis, RNA , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL